Telegram Group & Telegram Channel
Всем привет! На канале Data analysis | Анализ данных | DA разбираются темы и вопросы, которые должен знать аналитик данных, имеющий опыт 3-6 лет. Все темы взяты из реальных вакансий, опубликованных на hh.ru.

Будет полезно, если вы являетесь аналитиком данных (начинающим или опытным) или работаете по смежной профессии, либо просто интересуетесь базами данных, Python, SQL, экономикой и финансами и всеми производными от этих тем.

🟠Список разобранных вопросов:

Python:

▶️Эмбеддинги предложений
▶️Алгоритм кластеризации
▶️Кластеризация текстовой информации
▶️Визуализация: Matplotlib
▶️Визуализация: Seaborn
▶️Python в Tableau
▶️Python + SQL: Cx_oracle
▶️Большие данные в Python: Dask
▶️Массовая загрузка файлов в БД

SQL:

▶️PARTITION (оконные функции)
▶️PARTITION (партиционирование)
▶️Процедуры: разбор IN | OUT | IN OUT
▶️Процедуры: объявления и исключения
▶️PACKAGE (пакеты)
▶️Циклы LOOP, WHILE, FOR
▶️CURSOR
▶️Индексы
▶️Представления (Views)
▶️Материализованные и нематериализованные views
▶️Pivot в SQL
▶️Hints (хинты)
▶️EXPLAIN PLAN
▶️TRIGGER (триггеры)

Базы данных:

▶️Какие бывают базы данных
▶️Виды БД наглядно
▶️ACID и BASE
▶️Типы данных
▶️OLAP-кубы
▶️Проектирование баз данных
▶️Разница между БД и DWH
▶️Витрины данных
▶️ETL и ELT процессы
▶️Звездочка, снежинка, Data Vault
▶️Слои данных в DWH
▶️Нормализация

Инструменты:

▶️
Обзор Hadoop
▶️Обзор Hive
▶️Обзор Impala
▶️Обзор Airflow
▶️Обзор ClickHouse
▶️Массивы, groupArray, groupUniqArray, uniq
▶️arraySort, arrayReverseSort и arrayFilter
▶️Tableau
▶️Arenadata Catalog
▶️Qlik Sense
▶️Informatica PowerCenter

А/Б тестирование:

▶️Основы А/Б тестов
▶️А/Б тесты на практике
▶️Математические методы проверки результатов
▶️Инструменты А/Б тестирования

Работа с данными:

▶️Парадокс Симпсона
▶️Банковские клиенты
▶️Клиентская информация в банковском DWH
▶️Банковские продукты
▶️Продуктовая информация в банковском DWH
▶️Счета, баланс и фин рез в банковском DWH
▶️Качество данных
▶️Метаданные
▶️Source-to-Target Mapping

🟠В ближайшем будущем будем разбирать:

▶️Больше про SQL и базы данных: архитектуру и т.п.
▶️Больше питоновских библиотек и кейсов
▶️Про банковские данные
▶️Актуальные инструменты, в частности BI-инструменты и ETL-инструменты



tg-me.com/pythonbooksru/817
Create:
Last Update:

Всем привет! На канале Data analysis | Анализ данных | DA разбираются темы и вопросы, которые должен знать аналитик данных, имеющий опыт 3-6 лет. Все темы взяты из реальных вакансий, опубликованных на hh.ru.

Будет полезно, если вы являетесь аналитиком данных (начинающим или опытным) или работаете по смежной профессии, либо просто интересуетесь базами данных, Python, SQL, экономикой и финансами и всеми производными от этих тем.

🟠Список разобранных вопросов:

Python:

▶️Эмбеддинги предложений
▶️Алгоритм кластеризации
▶️Кластеризация текстовой информации
▶️Визуализация: Matplotlib
▶️Визуализация: Seaborn
▶️Python в Tableau
▶️Python + SQL: Cx_oracle
▶️Большие данные в Python: Dask
▶️Массовая загрузка файлов в БД

SQL:

▶️PARTITION (оконные функции)
▶️PARTITION (партиционирование)
▶️Процедуры: разбор IN | OUT | IN OUT
▶️Процедуры: объявления и исключения
▶️PACKAGE (пакеты)
▶️Циклы LOOP, WHILE, FOR
▶️CURSOR
▶️Индексы
▶️Представления (Views)
▶️Материализованные и нематериализованные views
▶️Pivot в SQL
▶️Hints (хинты)
▶️EXPLAIN PLAN
▶️TRIGGER (триггеры)

Базы данных:

▶️Какие бывают базы данных
▶️Виды БД наглядно
▶️ACID и BASE
▶️Типы данных
▶️OLAP-кубы
▶️Проектирование баз данных
▶️Разница между БД и DWH
▶️Витрины данных
▶️ETL и ELT процессы
▶️Звездочка, снежинка, Data Vault
▶️Слои данных в DWH
▶️Нормализация

Инструменты:

▶️
Обзор Hadoop
▶️Обзор Hive
▶️Обзор Impala
▶️Обзор Airflow
▶️Обзор ClickHouse
▶️Массивы, groupArray, groupUniqArray, uniq
▶️arraySort, arrayReverseSort и arrayFilter
▶️Tableau
▶️Arenadata Catalog
▶️Qlik Sense
▶️Informatica PowerCenter

А/Б тестирование:

▶️Основы А/Б тестов
▶️А/Б тесты на практике
▶️Математические методы проверки результатов
▶️Инструменты А/Б тестирования

Работа с данными:

▶️Парадокс Симпсона
▶️Банковские клиенты
▶️Клиентская информация в банковском DWH
▶️Банковские продукты
▶️Продуктовая информация в банковском DWH
▶️Счета, баланс и фин рез в банковском DWH
▶️Качество данных
▶️Метаданные
▶️Source-to-Target Mapping

🟠В ближайшем будущем будем разбирать:

▶️Больше про SQL и базы данных: архитектуру и т.п.
▶️Больше питоновских библиотек и кейсов
▶️Про банковские данные
▶️Актуальные инструменты, в частности BI-инструменты и ETL-инструменты

BY Python книги на русском




Share with your friend now:
tg-me.com/pythonbooksru/817

View MORE
Open in Telegram


Python книги на русском Telegram | DID YOU KNOW?

Date: |

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

Python книги на русском from vn


Telegram Python книги на русском
FROM USA